Article


Cover

№2 2023

Title

Assessment of vibration suppression methods for spacecraft electric pump unit

Authors

O.V. Shirobokov, S.A. Matveev, N.S. Slobodzyan, A.V. Gorbunov

Organization

Baltic State Technical University «VOENMEH» named after D. F. Ustinov
Saint Petersburg, Russian Federation

Abstract

This article characterizes the spacecraft as a means of performing various tasks, including by precision equipment. Emphasis is placed on vibration as one of the influencing factors and on the need for a low level of vibration on the spacecraft. Among the side effects of the electric pump unit of the thermal control system, the urgent task is to reduce vibration activity when developing a new model for advanced spacecraft. An integrated approach to solving the problem is indicated with the consideration of electric pump unit as a system and the selection of several directions to achieve the root-mean square value of vibration acceleration of 0,01g and below. Possible methods for reducing vibration activity in each of the directions and implemented solutions in the developed sample are described in detail. On several versions of electric pump unit for experimental determination of the level of root-mean square value vibration acceleration at a frequency of 5–1000 Hz. According to the results of the experiment, the contribution to the reduction of vibroactivity in several directions is estimated. It is concluded that only an integrated approach makes it possible to achieve a very low level of vibration activity of electric pump unit.

Keywords

electric pump unit, thermal control system, spacecraft, integrated approach, vibration suppression

References

[1] Telepnev P. P., Kuznetsov D. A. Metodi vibrozaschiti precizionnih kosmicheskih apparatov [Vibration protection methods for precision spacecraft]. Khimki, NPO Lavochkina JSC, 2019, 263 p. (In Russian)

[2] GOST R 53802-2010 Sistemi i kompleksi kosmicheskii. Termini i opredelenia [State Standard R 53802-2010. Space systems and stations. Terms and definitions]. Korolev, FGUP CNIImash, 2010, 27 p. (In Russian)

[3] Korotkov E. B., Shirobokov O. V., Matveev S. A., Yudina Z. A. Obzor electronasosnih agregatov system termoregulirovania kosmicheskih apparatov [Overview of electric pump units for spacecraft thermal control systems] // Spacecrafts & Technologies, 2021, vol. 5, no. 4, pp. 198–207. doi: 10.26732/j.st.2021.4.03. (In Russian)

[4] Dvirny V. V., Dvirny G. V., Khnykin A. V., Golovanova V. V., Krushenko G. G. Obespechenie dlitelnogo resursa malorashodnih agregatov [Providing the long service life for low water/low gas consumption pumps] // The Research of the Science City, 2014, no. 3, pp. 12–20. (In Russian)

[5] Liu W., Znang Y., Li Z., Dong W. Control performance simulation and tests for microgravity active vibration isolation system onboard the Tianzhou-1 cargo spacecraft // Astrodynamics, 2018, no. 2 (4), pp. 339–360.

[6] Saggin B., Scaccabarozzi D., Comolli L. Long-term vibration monitoring onboard mars express mission // Journal of Spacecraft and Rockets, 2014, vol. 51, no. 51, pp. 1664–1672. doi: 10.2514/1.A32752.

[7] Zhukov Yu. A., Korotkov E. B., Matveev S. A., Slobodzyan N. S., Shirobokov O. V. Vibrozashchita precizionnogo oborudovaniya kosmicheskih apparatov ot vnutrennih istochnikov vozmushchenij [Protection of precision spacecraft equipment from internal sources of vibration] // Spacecrafts & Technologies, 2021, vol. 5, no. 4, pp. 217–226. doi: 10.26732/j.st.2021.4.05. (In Russian)

[8] Vibracii v tehnike: spravochnik. Tom 6: Zashita ot vibratsii i udara [Vibration in technology. vol. 6. Protection from vibration and shock]. Moscow, Mechanical Engineering, 1981, 456 p. (In Russian)

[9] Matveev S. A., Shirobokov O. V., Slobodzyan N. S., Gorbunov A. V. Konstruktivnye i programmno-algoritmicheskie metody snizheniya urovnya vibracii elektronasosnogo agregata kosmicheskogo apparata [Constructive and software methods for reducing the vibration of spacecraft electric pump unit] // Journal of Advanced Research in Technical Science, 2021, no. 27, pp. 34–36. doi: 10.26160/2474-5901-2021-27-34-36. (In Russian)

[10] Brennen C. E. Hydrodynamics of pumps. Cambridge University Press, 2011, 301 p.

[11] Gorbunov A. V., Matveev S. A., Testoedov N. A., Lekanov A. V., Porpylev V. G. Hermetichniy mnogostupenchatiy centrobeznhiy elektronasos [Hermetically sealed multistage centrifugal electric pump]. Patent RU 2791265, 2023, bulletin no. 7.

[12] Borovikov M. A., Domanov V. I., Domanov A. V. Operativnaya diagnostika ventilnogo dvigatelya na avtonomnom ob’ekte [Operational diagnostics of a brushless motor at an autonomous facility] // Abstracts of the scientific-practical conference «Electrical engineering and energy of the Volga region at the turn of the millennium», Cheboksari, 2001, pp. 35–37. (In Russian)

[13] Borovikov M. A., Domanov V. I., Domanov A. V. Voprosi postroenia avtomobilnogo ventilnogo electroprivoda s mikrokontrollernoy sistemoy [Issues of building an automobile valve electric drive with a microcontroller control system] // Bulletin of UlSTU, 2000, no. 1, pp. 66–70. (In Russian)

[14] Yudina Z. A., Sinichenko M. I., Ladigin A. P., Sin'kovskiy F. K., Usmanov D. B. Prichini vozniknovenia vibracii v aggregate electronasosnom kosmicheskogo apparata i sposobi ee snizhenia [The vibration origin in the electric pump of the spacecraft and methods to reduce them] // Spacecrafts & Technologies, 2021, vol. 5, no. 2, pp. 63–76. doi: 10.26732/j.st.2021.2.01. (In Russian)

[15] Chernavskiy S. A. Podshipniki skolzheniya [Plain bearings]. Moscow, Mashgiz, 1963, 243 p. (In Russian)

[16] Introduction to pump rotordynamics. Available at: https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-EN-AVT-143/EN-AVT-143-09.pdf (accessed 15.03.2023).

[17] Morkovin A. V., Plotnikov A. D., Borisenko T. B. Teplonositeli dlya teplovih trub i naruzhnih gidravlicheskih konturov sistem termoregulirovaniya avtomaticheskih i pilotiruemih kosmicheskih apparatov [Heat carriers for heat pipes and external hydraulic circuits of thermal control systems for automatic and manned spacecraft] // Space technique and technologies, 2015, no. 3, pp. 89–99. (In Russian)

[18] Smarin Ya. A. Improving the efficiency of the electric drive of a volumetric hydraulic pump of a multi-wheeled motor transport platform : Cand. Diss. Chelyabinsk, 2017, 150 p.

[19] Matveev S. A., Testoedov N. A., Slobodzyan N. S., Goncharov V. O., Kiselev A. A., Balenko N. A. Otkazoustojchivaya sistema upravleniya elektronasosnym agregatom kosmicheskogo naznacheniya [Fail-safe control system for an electric pump unit of space application] // Izv. VUZ. Aviatsionnaya Tekhnika, 2021, no. 2, pp. 37–44. (In Russian)

[20] Tomasov V. S., Lovlin S. Yu., Egorov A. V. Algoritmi kompensacii pulsaciy momenta precizionnogo oborudovania na baze sinhronnoi mashini s postoyannimi magnitami [Torque ripple compensation algorithms for a precision electric drive based on a synchronous machine with permanent magnets] // Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 2 (84), pp. 77–83. (In Russian)

[21] Kim I., Nakazawa N., Kim S., Park Ch., Yu Ch. Compensation of torque ripple in high performance BLDC motor drives // Control Engineering Practice, 2010, vol. 18, issue 10, pp. 1166–1172. doi: 10.1016/j.conengprac.2010.06.003.

[22] Nakao N., Tobari K., Sugino T., Ito Yo., Mishima M., Maeda D. Torque ripple suppression control for PMSMs using feedforward compensation and online parameter estimation // IEEJ Journal of Industry Applications, 2021, vol. 141, no. 1, pp. 18–27. doi: 10.1541/ieejjia.20003337.

[23] V Samarskom universite im. Koroleva proshni ispitania ustroystv vibrozaschiti dlya raketi-nositelya «Soyuz-5» [At the Samara University. Korolev passed tests of vibration protection devices for the Soyuz-5 launch vehicle]. Available at: https://ssau.ru/news/18746-v-samarskom-universitete-im-koroleva-proshli-ispytaniya-ustroystv-vibrozashchitydlya-rakety-nositelya-soyuz-5 (accessed 13.03.2023). (In Russian)

[24] Uchastie v missii ExoMars 2016 [Participation in the ExoMars 2016 mission]. Available at: http://onil1.ru/news/48-exomars2016.html (accessed 13.03.2023). (In Russian)



For citing this article

Shirobokov O.V., Matveev S.A., Slobodzyan N.S., Gorbunov A.V. Assessment of vibration suppression methods for spacecraft electric pump unit // Spacecrafts & Technologies, 2023, vol. 7, no. 2, pp. 107-115. doi: 10.26732/j.st.2023.2.03


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).