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Излагается решение вопросов, возникающих при коррекции расчетных динамических 
моделей летательных аппаратов по результатам испытаний. К ним относится выбор 
методики модальных испытаний на основе анализа соотношений между вынужденными 
монофазными и собственными колебаниями. По результатам испытаний можно уста-
новить диссипативные свойства конструкций. Отмечено, что погрешности эксперимен-
тального определения собственных частот колебаний значительно ниже погрешностей 
в оценках обобщенных масс и коэффициентов демпфирования. Представлен метод кор-
рекции параметров упругости конечно-элементных моделей летательных аппаратов. 
Матрица масс считается определенной точно. Целевой функцией является взвешенная 
сумма квадратов разностей между экспериментальными и расчетными собственными 
частотами. Для минимизации целевой функции используется итерационный процесс. 
Проведены исследования чувствительности коррекции к погрешностям в результатах 
модального анализа. Предложена методика моделирования диссипативных свойств 
конструкций по результатам испытаний. Для всех исследуемых тонов колебаний опре-
деляются обобщенные коэффициенты демпфирования, величины которых назначаются 
целевыми. Эти коэффициенты образуют диагональную матрицу демпфирования в главных 
координатах. Для построения матрицы демпфирования в физической системе координат 
использована модель рэлеевского демпфирования. Проведена коррекция расчетной модели 

консоли крыла самолета и самолета типа «летающее крыло».
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Введение

На  этапе проектирования летательных аппа-
ратов (ЛА) разрабатываются их расчетные дина-
мические модели. Эти модели используются для 
получения предварительных решений, например, 
таких проблем, как защита от  флаттера авиаци-
онной техники (АТ) и  оценка нагрузок, действу-
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Вопросы коррекции расчетных моделей летательных аппаратов…

НОВЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ  
В КОСМИЧЕСКОЙ ТЕХНИКЕ

ющих на  элементы конструкции космических 
аппаратов (КА). После этапа проектирования тех-
нологии использования расчетных моделей АТ 
и  КА различаются. Для АТ создаются динамиче-
ски подобные модели (ДПМ), и первая коррекция 
расчетных моделей производится по результатам 
продувок ДПМ в  аэродинамических трубах [1]. 
В дальнейшем эти расчетные модели корректиру-
ются при внесении изменений в конструкции АТ 
в опытном производстве и серийной эксплуатации 
по  результатам экспериментального модального 
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анализа. В то же время нагрузки на элементы КА 
определяются по  расчетной модели, коррекция 
которой производится по результатам модальных 
испытаний в рамках наземной экспериментальной 
отработки КА [2].

Программа наземных модальных испытаний 
обычно предусматривает исследования собствен-
ных тонов колебаний ЛА в  заданном частотном 
диапазоне. Определению подлежат в первую оче-
редь собственные частоты, формы и  характери-
стики демпфирования. За  редким исключением 
требуется контроль обобщенных масс. Основным 
методом модальных испытаний является класси-
ческий модальный анализ, основные положения 
и теоретическое обоснование которого изложены 
в работах [3–7]. Современное состояние методик 
испытаний описано в трудах [3, 6, 8, 9].

Среди методов коррекции расчетных моде-
лей по  результатам модальных испытаний наи-
большее распространение получили детерми-
нированные методы. Их реализация происходит 
в несколько этапов. На первом этапе выявляются 
такие параметры собственных тонов колебаний 
конструкций, которые необходимы для матема-
тического описания исследуемого с  помощью 
расчетной модели явления (флаттер АТ, дина-
мическая нагруженность элементов КА и  т.д.). 
На  втором этапе выявляются параметры, кото-
рые с  требуемой достоверностью определяются 
экспериментально. Значения этих параметров 
называют целевыми. На  заключительном этапе 
минимизируется целевая функция, описывающая 
разность между параметрами расчетной модели 
и  соответствующими экспериментальными дан-
ными [10–12]. Необходимо отметить, что в  це-
левой функции могут присутствовать как пара-
метры разной природы, так и  параметры, опре-
деляемые с разной степенью достоверности [13]. 
Поэтому параметрами коррекции могут одновре-
менно являться, например, геометрия конструк-
ций, механические характеристики материалов, 
граничные условия.

1. Методика модальных 
испытаний

Модальные испытания ЛА производятся ме-
тодом вынужденных монофазных колебаний [7]. 
В  соответствии с  этим методом дифференциаль-
ные уравнения движения ЛА в процессе испыта-
ний при многоточечном гармоническом возбужде-
нии имеют вид:
	 sin cosAY R CY E t F t+ + = ω + ω . 

( )Y N  

/R HY= ω , 

,U V= λ  

( )( )2 21 –  = –С А V E F+ λ ω λ , 

( )21 НV E F+ λ = + λ . 

( ) 0С A W−µ = , 

* *( ) 0C C A W + ∆ −µ =  . 

( )

( )

( )

( 1)
1 2

T( ) ( 1) ( )

1
2T( 1) ( ) ( )

, ,...,

1 min,
2

j
m

L
j j j

j j j

F

v W C W

W AW

+

+

=

+

χ χ χ =

 ∆ −

− ∆µ →

∑
  



  

 

( )
* 2

*
* * T

( )MAC ,
( )( )

T

T

W WW W
W W W W

= . 

( )2 – 0,Т Т
j jV А С V V HVω = =

 

   .j≠  

ТV HV h=
  

, 

H C A∗= α +β , 
2

,1
( , ) 1 min

L c aG v
h∗ α β

=

 α +β
α β = − → 

 
∑  







. 

*
1

*
1

2 1 ,

2 1 . 

  

 

L

L

c a cG v
h

a

h

c aG v
h h

∗
=

∗
=

 α +β∂
= − − ∂α  

 α +β∂

 
 
 

 
 = − − ∂β   

∑

∑

  





 

  





 

 

* * *,Tc W C W=
  

 * *,Ta W AW=
  

 1,  2, ,  .L=   

int extH H H H= + ∆ + ∆ , 
int exth h h h= + ∆ + ∆ , 

( )1 2
*, , , 0,mr h h−η = =η η

  



  1,  2, ,  ,L=   

2 2

1 1
min,

L

c

m

i
iF v r v

= =

= + η →∑ ∑
 



 

( )
2

2*
*

1 1
,1 1 MAC , min

L LfF w W W
f= =

   →= − + −    
∑ ∑

 

 



 

.	 (1)

Здесь A(N × N)  и С(N × N) – ​матрицы инер-
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 и Y(N) – ​ускорения и пере-
мещения в контрольных точках ЛА; R(N) – ​силы 
демпфирования; E(N) и F(N) – ​составляющие сил 

возбуждения; ω  – ​частота колебаний; N  – ​число 
степеней свободы расчетной модели ЛА.

Диссипативные свойства ЛА опишем как
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,	 (2)

где H(N × N) – ​матрица демпфирования. Формула 
(2) отражает основное свойство сил демпфирова-
ния: их фаза есть фаза скорости колебаний.

Решение (1) есть Y = U sin ωt  – ​V cos ωt. 
Полагается, что подбором возбуждения реализу-
ется режим вынужденных монофазных колебаний:
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где λ – ​действительное число. В этом случае диф-
ференциальные уравнения (1) с учётом (2) и (3) 
приводятся к виду:
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Уравнения (4) и (5) позволяют независимо 
определять упруго-массовые характеристики ЛА 
и характеристики демпфирования.

В  статье [7] разработаны способы подбора 
монофазного (F  = 0)  и немонофазного возбуж-
дения для реализации режима монофазных ко-
лебаний, а  также способ подбора возбуждения 
ограниченным числом сил. Изложен порядок 
проведения экспериментального модального ана-
лиза методом вынужденных монофазных колеба-
ний. Остановимся здесь на  нескольких частных, 
но значимых для практики модальных испытаний 
случаях.

Программа испытаний обычно предусматри-
вает определение в первую очередь частот и форм 
собственных тонов колебаний в  задаваемом ча-
стотном диапазоне. Из (4) следует, что, используя 
монофазное возбуждение и условие λ = 0 (фазовый 
резонанс), можно определить собственные частоты 
и собственные векторы Wℓ = Vℓ, ℓ = 1, 2,…, L; L ≤ N.

В  работах [14–16] представлены результаты 
исследований погрешностей оценок обобщенных 
динамических характеристик ЛА в модальных ис-
пытаниях. Достоверность определения этих пара-
метров определяют такие факторы, как случайные 
ошибки возбуждения и измерения колебаний, по-
мехи тонов с близкими собственными частотами, 
вывешивание ЛА на  упругой системе. Показано, 
что наименьшей чувствительностью к указанным 
факторам обладает определение собственных ча-
стот методом фазового резонанса. Например, ми-
нимальные погрешности в  обобщенных массах 
на  порядок превышают погрешности в  собствен-
ных частотах. При этом области частот вынуж-
денных колебаний ЛА в  окрестностях фазовых 
резонансов, в которых справедливо это соотноше-
ние погрешностей, не представляется возможным 
установить.
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2. Коррекция расчетных 
динамических моделей

Основные положения рассматриваемого 
в  настоящей работе метода коррекции конечно-
элементной модели (КЭ‑модели) ЛА изложены 
авторами в  работах [17, 18]. Рассматривается 
обобщенная проблема собственных значений 
КЭ‑модели:
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,	

где μ – ​собственные значения.
Расчетные матрицы инерции и жесткости стро-

ятся по  конструкторской документации на  этапе 
проектирования ЛА. По результатам, изложенным 
в  предыдущем разделе, установлено, что досто-
верность экспериментальной оценки собственных 
частот является основанием считать их параме-
трами целевой функции для коррекции характери-
стик упругости расчетной модели. При этом кор-
рекция расчетной матрицы инерции по  результа-
там модальных испытаний нецелесообразна ввиду 
больших погрешностей в  оценках обобщенных 
масс. Поэтому корректируются только характе-
ристики упругости с  помощью корректирующей 
КЭ‑модели с матрицей ΔС.

На рисунке 1 показана принципиальная схема 
предлагаемого метода.

В результате коррекции необходимо найти та-
кую ΔС, чтобы достигнуть целевого значения μ*:
	

sin cosAY R CY E t F t+ + = ω + ω . 

( )Y N  

/R HY= ω , 

,U V= λ  

( )( )2 21 –  = –С А V E F+ λ ω λ , 

( )21 НV E F+ λ = + λ . 

( ) 0С A W−µ = , 

* *( ) 0C C A W + ∆ −µ =  . 

( )

( )

( )

( 1)
1 2

T( ) ( 1) ( )

1
2T( 1) ( ) ( )

, ,...,

1 min,
2

j
m

L
j j j

j j j

F

v W C W

W AW

+

+

=

+

χ χ χ =

 ∆ −

− ∆µ →

∑
  



  

 

( )
* 2

*
* * T

( )MAC ,
( )( )

T

T

W WW W
W W W W

= . 

( )2 – 0,Т Т
j jV А С V V HVω = =

 

   .j≠  

ТV HV h=
  

, 

H C A∗= α +β , 
2

,1
( , ) 1 min

L c aG v
h∗ α β

=

 α +β
α β = − → 

 
∑  







. 

*
1

*
1

2 1 ,

2 1 . 

  

 

L

L

c a cG v
h

a

h

c aG v
h h

∗
=

∗
=

 α +β∂
= − − ∂α  

 α +β∂

 
 
 

 
 = − − ∂β   

∑

∑

  





 

  





 

 

* * *,Tc W C W=
  

 * *,Ta W AW=
  

 1,  2, ,  .L=   

int extH H H H= + ∆ + ∆ , 
int exth h h h= + ∆ + ∆ , 

( )1 2
*, , , 0,mr h h−η = =η η

  



  1,  2, ,  ,L=   

2 2

1 1
min,

L

c

m

i
iF v r v

= =

= + η →∑ ∑
 



 

( )
2

2*
*

1 1
,1 1 MAC , min

L LfF w W W
f= =

   →= − + −    
∑ ∑

 

 



 

.	

Корректирующая матрица ΔС представляется 
в виде суммы матриц: ΔС = ΔСint + ΔСext. Первая 
матрица соответствует внутренним корректирую-
щим элементам и определяет изменение характе-
ристик самой модели, в то время как вторая слу-
жит для изменения характеристик внешних свя-
зей, приложенных к модели.

Для поиска корректирующих жесткостей 
(χ1, χ2,…, χm), использующихся для составления 
матрицы ΔС, применяется итерационный алго-
ритм. На  каждой итерации минимизируется сле-
дующая целевая функция:
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	 (6)

где j – ​номер итерации; vℓ – ​весовой коэффициент 
ℓ-го тона; L – ​число тонов колебаний, по которым 
производится коррекция; μℓ(j+1) = μℓ(j) + Δμℓ(j+1)  – ​
приближение собственного значения к  целевому 
μℓ* на шаге j + 1.

Число параметров коррекции m определяется 
количеством вводимых корректирующих элементов 
и их типом. Количество корректирующих элементов 
определяется числом связей между элементами в ма-
трице жесткости, которое может быть уменьшено 
путем введения взаимосвязей между ним, например 
учета симметрии модели [18].

В ходе итерационного процесса (6) контролиру-
ется соотношение между изменяющимися в резуль-
тате коррекции формами собственных колебаний 
и их исходным состоянием. Для этого используется 
критерий модального соответствия:

	

sin cosAY R CY E t F t+ + = ω + ω . 

( )Y N  

/R HY= ω , 

,U V= λ  

( )( )2 21 –  = –С А V E F+ λ ω λ , 

( )21 НV E F+ λ = + λ . 

( ) 0С A W−µ = , 

* *( ) 0C C A W + ∆ −µ =  . 

( )

( )

( )

( 1)
1 2

T( ) ( 1) ( )

1
2T( 1) ( ) ( )

, ,...,

1 min,
2

j
m

L
j j j

j j j

F

v W C W

W AW

+

+

=

+

χ χ χ =

 ∆ −

− ∆µ →

∑
  



  

 

( )
* 2

*
* * T

( )MAC ,
( )( )

T

T

W WW W
W W W W

= . 

( )2 – 0,Т Т
j jV А С V V HVω = =

 

   .j≠  

ТV HV h=
  

, 

H C A∗= α +β , 
2

,1
( , ) 1 min

L c aG v
h∗ α β

=

 α +β
α β = − → 

 
∑  







. 

*
1

*
1

2 1 ,

2 1 . 

  

 

L

L

c a cG v
h

a

h

c aG v
h h

∗
=

∗
=

 α +β∂
= − − ∂α  

 α +β∂

 
 
 

 
 = − − ∂β   

∑

∑

  





 

  





 

 

* * *,Tc W C W=
  

 * *,Ta W AW=
  

 1,  2, ,  .L=   

int extH H H H= + ∆ + ∆ , 
int exth h h h= + ∆ + ∆ , 

( )1 2
*, , , 0,mr h h−η = =η η

  



  1,  2, ,  ,L=   

2 2

1 1
min,

L

c

m

i
iF v r v

= =

= + η →∑ ∑
 



 

( )
2

2*
*

1 1
,1 1 MAC , min

L LfF w W W
f= =

   →= − + −    
∑ ∑

 

 



 

.	 (7)

В  целевых значениях собственных частот 
колебаний присутствуют погрешности, источ-
ники которых указаны в  предыдущем разделе. 
Необходимо отметить, что наличие системы упру-
гого вывешивания ЛА и  тонов с  близкими соб-
ственными частотами приводит к  систематиче-
ским отклонениям целевых значений частот от их 

Рисунок 1. Принципиальная схема коррекции
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точных значений. Эти отклонения можно оценить. 
Однако ошибки измерения колебаний имеют слу-
чайный характер, и  погрешности определяемых 
по  этим измерениям собственных частот так-
же случайны. Поэтому необходимо исследовать 
устойчивость алгоритма коррекции к таким ошиб-
кам. Эти исследования проведены методом стати-
стического моделирования.

Будем считать, что погрешности определения 
целевых значений собственных частот распреде-
ляются по усеченному нормальному закону с ну-
левым математическим ожиданием. Для модели-
рования погрешностей использовался генератор 
случайных чисел. Исследования устойчивости ал-
горитма коррекции проводились применительно 
к свободной прямоугольной пластине по следую-
щему плану:

–	 вычислялись исходные значения собствен-
ных частот и  форм колебаний (виртуальный экс-
перимент);

–	 вводились случайные отклонения Δf задан-
ного уровня в значения частот f;

–	 корректировались параметры расчетной мо-
дели по  искаженным значениям частот, вычисля-
лись «ошибочные» собственные формы колебаний;

–	 оценивалось влияние погрешностей в  соб-
ственных частотах на результаты коррекции по из-
менению критерия модального соответствия (7) 
εМАС между «ошибочными» и  исходными форма-
ми колебаний;

–	 виртуальный эксперимент повторялся 
до получения стабильных оценок математическо-
го ожидания и дисперсии εМАС.

Исследования по  изложенному плану были 
проведены для нескольких уровней погрешностей 
Δf и при разном числе тонов p, по которым коррек-
тировалась расчетная модель. На каждом варианте 
расчетов проверялось соответствие распределе-
ний случайных величин εМАС нормальному закону.

По  результатам исследований, представлен-
ным на рисунке 2, можно сделать вывод о том, что 
для рассматриваемой модели алгоритм коррекции 
обладает низкой чувствительностью к  погрешно-
стям в  результатах экспериментального модаль-
ного анализа. Кроме того, с  увеличением числа 
тонов p погрешность коррекции εМАС стремится 
к предельному значению.

Исследования устойчивости алгоритма кор-
рекции к погрешностям в целевых значениях соб-
ственных частот проведены также применительно 
к конечно-элементной расчетной модели условно-
го КА (рисунок 3). Расчетная модель имеет пять-
десят тысяч степеней свободы.

Результаты исследований аналогичны полу-
ченным для пластины: с увеличением числа тонов, 
по  которым производится коррекция модели, по-
грешность коррекции стремится к  предельному 
значению (рисунок 4). Несмотря на  то,  что при 
оценке чувствительности алгоритма коррекции 

Рисунок 2. Погрешности коррекции  
расчетной модели пластины

Рисунок 3. КЭ‑модель условного КА
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Вопросы коррекции расчетных моделей летательных аппаратов…

на  примере моделей пластины и  КА просматри-
ваются общие закономерности, количественные 
выражения чувствительности алгоритма отлича-
ются. Поэтому рекомендуется проводить анализ 
по  предложенному плану для каждой исследуе-
мой модели объекта.

Сделаны также расчеты изменений жестко-
стей расчетной модели при коррекции по  трем 
тонам собственных колебаний. На рисунке 5 крас-
ным цветом отмечены области, в которых для до-
стижения целевых значений коррекции расчетная 
жесткость была повышена, а  синим  – ​понижена. 

Черный цвет соотносится с областями неизменен-
ной расчетной жесткости.

3. Моделирование 
диссипативных  
свойств конструкций

Решение задачи описания диссипативных 
свойств в  расчетных динамических моделях ЛА 
можно существенно упростить, если принять 
априори модель рассеяния энергии при колебаниях 

конструкций. Практически это означает придание 
матрице демпфирования некоторых свойств ана-
логично матрицам инерции и жесткости. Но если 
положительная определенность, симметрия и воз-
можность приведения матриц инерции и  жестко-
сти к диагональному виду одним преобразованием 
координат есть следствие понятий о кинетической 
и  потенциальной энергиях, то  для придания кон-
кретных свойств матрице демпфирования основа-
ний не имеется. Здесь можно констатировать толь-
ко то, что матрица демпфирования положительно 
определенная, поскольку в  конструкции ЛА нет 
внутренних источников энергии, идущей на  под-
держание вынужденных колебаний.

Для выявления свойств матрицы демпфиро-
вания в работе [7] предложено сопоставить моно-
фазные колебания с  собственными на  частотах 
вне фазовых резонансов. Установлено, что если 
на  этих частотах при монофазном возбуждении 
существуют действительные значения λℓ (ℓ  = 1, 
2,…, L) и формы монофазных колебаний Vℓ совпа-
дают с соответствующими формами Wℓ собствен-
ных колебаний, то из (4) и (5) следует
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Для ℓ = j получаем
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,	 (9)

где hℓ  – ​обобщенный коэффициент демпфирова-
ния ℓ-го тона, способы определения которого из-
вестны [5–7, 14]. Важно отметить, что из  опыта 

модальных испытаний следует, что практически 
всегда можно выделить диапазон частот в окрест-
ности каждого фазового резонанса исследуемых 
тонов, где монофазные колебания совпадают 
с собственными колебаниями. На этом основании 
следует вывод о том, что матрица демпфирования 
H(L × L) в главных координатах имеет диагональ-
ный вид.

Для восстановления матрицы демпфирования 
H(N × N) в расчетных моделях ЛА с N степенями 
свободы по построенной по результатам испыта-

Рисунок 4. Погрешности коррекции  
расчетной модели условного КА

Рисунок 5. Распределение изменений жесткостей расчетной модели условного КА  
в результате коррекции
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ний матрице H(L × L) (L ≤ N, практически всегда 
L ≪ N) разработан алгоритм, подобный представ-
ленному в разделе 2. При этом значения диагональ-
ных элементов hℓ матрицы H приняты как целевые 
hℓ*. Свойства матрицы H(L × L), которые следуют 
из (8) и (9), распространяются на матрицу H(N × 
N) на том основании, что практический интерес 
представляют только L (как правило, низших) тонов, 
и влияние на характеристики этих тонов остальных 
N – ​L собственных колебаний пренебрежимо мало. 
Поэтому начальное приближение для построения 
матрицы демпфирования в физической системе 
координат строится по модели Рэлея:
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,	

где C* = C + ΔC – ​матрица жесткости после кор-
рекции; α и β – ​параметры демпфирования.

В модальных испытаниях были определены 
обобщенные коэффициенты демпфирования hℓ* для 
L из N тонов колебаний, поэтому для определения 
параметров α и β методом сопряженных градиентов 
решается задача минимизации целевой функции:
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.	 (10)

Производные, составляющие вектор-градиент 
целевой функции, имеют вид:
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В (10) и (11) входят весовые коэффициенты кор-
ректируемых тонов vℓ, а также обобщенные жест-
кости и обобщенные массы с учетом собственных 
векторов после коррекции:
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Отметим, что в  результате решения задачи 
(10) не удается с  высокой степенью точности 
достичь целевых обобщенных коэффициентов 
демпфирования в  силу ограниченности набора 
параметров коррекции. Поэтому полученное 
приближение матрицы демпфирования изменя-
ется аналогично тому, как корректируется ма-
трица жесткости:
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,	

где ΔHint и ΔHext  – ​матрицы демпфирования вну-
тренних и  внешних корректирующих элементов. 
Под внутренним демпфированием понимаются 
потери энергии за счет трения в материалах моде-
ли, а под внешним – ​рассеяние энергии при взаи-
модействии модели с окружающей средой, напри-
мер воздухом. Последнее особенно актуально для 

крупногабаритных конструкций с большой парус-
ностью.

Заметим, что внутренние корректирующие 
элементы, составляющие матрицу ΔHint, являются 
сбалансированными, то есть позволяют изменять 
межузловые связи КЭ‑модели, не  накладывая 
внешних связей. Это приводит к  невозможности 
учесть внешнее демпфирование введением только 
таких элементов. Поэтому в случае, когда внешнее 
демпфирование оказывает существенное влияние 
на конструкцию, вводятся внешние корректирую-
щие элементы, составляющие матрицу демпфи-
рования ΔHext. Тогда для новой матрицы демпфи-
рования можно записать обобщенные коэффици-
енты демпфирования в  следующем виде (индекс 
тона опущен):
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,	 (12)

где h  – ​обобщенный коэффициент демпфирова-
ния, соответствующий начальному приближению 
матрицы демпфирования; Δhint и Δhext – ​обобщен-
ные коэффициенты демпфирования внутренних 
и внешних корректирующих элементов.

Выражения для обобщенных коэффициентов 
демпфирования Δhint и Δhext в общем случае зави-
сят от типа вводимых корректирующих элементов. 
В  [18] были получены выражения для случая ба-
лочных корректирующих элементов.

Алгоритм восстановления матрицы демпфи-
рования заключается в том, чтобы найти такие па-
раметры η1, η2,…, ηm, которые будут решением не-
доопределенной системы нелинейных уравнений:
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	 (13)

где m  – ​число корректирующих элементов, как 
в разделе 2.

Решением системы (13) считается решение за-
дачи безусловной минимизации целевой функции, 
в качестве которой принимается сумма квадратов 
каждого из уравнений со взвешенной суммой ква-
дратов коэффициентов демпфирования:
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	 (14)

где vℓ  – ​весовые коэффициенты корректируемых 
тонов, vc  – ​параметр регуляризации. Из  прак-
тики применения метода: если модель хорошо 
описывает реальный объект, то  можно положить 
vc = 0. Задача (14) решается минимизацией целе-
вой функции методом сопряженных градиентов.

4. Практика коррекции 
расчетных моделей

4.1. Коррекция расчетной модели консоли 
крыла самолета
Расчетные модели ЛА могут быть представле-

ны в виде результата синтеза расчетных моделей 
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их составных частей. Такими составными частя-
ми служат, как правило, агрегаты ЛА: крыло, фю-
зеляж, оперение и т.д. Это позволяет производить 
модальные испытания и  коррекцию расчетных 
моделей поэтапно. Следствием такого подхода яв-
ляется то, что на  каждом этапе коррекции число 
корректируемых параметров значительно меньше 
числа параметров полной расчетной модели.

В качестве примера приведено решение задачи 
коррекции расчетной модели консоли крыла са-
молета. На время модальных испытаний консоль 
крыла была вывешена вертикально на  упругой 
подвеске (рисунок 6). В  эксперименте определе-
ны собственные частоты пяти низших тонов соб-
ственных колебаний крыла.

Конструктивно-силовой набор модели консо-
ли крыла представлялся невесомыми балочными 
и  оболочечными элементами. При этом инерци-
онные характеристики крыла воспроизводились 
дискретными массами, имеющими эксцентриси-
тет. Для формирования геометрической модели 
использовались таблицы с координатами вершин 

поверхностей и концевых точек балок. Толщины 
элементов обшивки задавались дискретно по вер-
шинам, образующим граничные поверхности. 
Распределение изгибных жесткостей внутри каж-
дой балки описывалось полиномом третьей сте-
пени, заданным в  равноотстоящих узлах. Число 
степеней свободы в  модели составило двадцать 
тысяч. Для сшивки панелей как между собой, так 
и с балочным каркасом использовались абсолютно 
жесткие балки.

Коррекция КЭ‑модели проводилась по  пяти 
наборам экспериментально определенных частот 
собственных тонов колебаний. Каждый последу-
ющий набор дополнял предыдущий одним тоном. 
На первом этапе была проведена коррекция толь-
ко по изгибу консоли крыла I‑го тона, а затем еще 
и по изгибу консоли крыла II‑го тона. В конечном 
итоге осуществлена одновременная коррекция 
по пяти тонам (таблица 1).

Распределения изменений узловых жесткостей 
по всем линейным степеням свободы КЭ‑модели 
до и после коррекции по первому тону и пяти то-

Рисунок 6. Модальные испытания консоли крыла

Таблица 1
Результаты коррекции модели консоли крыла

Тон
Относительная частота Погрешность до и после коррекции, %

Эксперимент Исходная 
модель До

После
1 2 3 4 5

1 1,00 1,51 50,7 0,0 0,0 0,0 0,0 0,0
2 2,28 3,18 39,5 –7,4 0,0 0,0 0,0 0,0
3 3,37 4,13 22,6 –18,6 –13,8 0,0 0,0 0,0
4 3,95 4,82 21,8 –19,1 –17,8 –8,2 0,0 0,0
5 4,87 6,15 26,2 –16,2 –21,8 –2,6 –4,4 0,0
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нам колебаний показаны на рисунках 7а и 7б соот-
ветственно.

Формы колебаний до и после коррекции удов-
летворительно коррелируют между собой по кри-
терию модального соответствия. Сравнение пер-
вых пяти форм колебаний срединной поверхности 
крыла до (черным цветом) и после (красным цве-
том) коррекции приведено на рисунках 8а‑8д.

4.2. Коррекция расчетной модели самолета  
типа «летающее крыло»
Рассмотрим коррекцию расчётной модели 

самолета типа «летающее крыло». Для построе-
ния модели использована пластинчато-балочная 
схематизация элементов планера на  основе ме-
тода полиномов. Такой подход обеспечивает воз-
можность быстрой параметризации исследуемой 
модели для оценки ее модальных характеристик. 
Однако такая модель обладает невысокой степе-
нью детализации, что приводит к  расхождениям 
между расчетными и  экспериментальными мо-
дальными характеристиками. Для минимизации 

Рисунок 7. Распределения изменений узловых жесткостей в результате коррекции:  
а – ​по одному тону; б – ​по пяти тонам

а                                                                                             б

этих расхождений предлагается варьировать упру-
гие параметры расчетных моделей без добавления 
корректирующих элементов, поскольку их число 
будет сопоставимо с числом элементов, образую-
щих модель, и, как следствие, затруднит использо-
вание этой модели для последующих параметри-
ческих расчётов аэроупругости.

Целью коррекции в  данном случае является 
изменение упругих характеристик модели таким 
образом, чтобы частоты и формы собственных ко-
лебаний были близки к  экспериментальным с  за-
данной точностью. При этом целевая функция за-
писывается следующим образом:
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	 (15)

где w  – ​весовой коэффициент влияния ошибок 
форм колебаний, fℓ и fℓ* – ​текущие и целевые значе-
ния частот собственных колебаний соответствен-

Рисунок 8. Первые пять форм колебаний консоли крыла до и после коррекции
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но. Исходя из того, что точность определения ча-
стот на порядок превышает точность определения 
форм колебаний, полагаем w = 0.1.

Задача минимизации целевой функции (15) 
решается относительно следующих параметров 
коррекции:

–	 характеристик материалов ортотропных 
пластин: модулей упругости и сдвига;

–	 изгибных и крутильных жесткостей балок;
–	 жесткостей пружин, моделирующих опоры 

шасси и узлы навески агрегатов планера.
С  целью улучшения сходимости вычисли-

тельной процедуры оптимизации характеристики 
разных типов перед коррекцией масштабируются 
таким образом, чтобы их максимальное значение 
не превышало единицы. При этом значения жест-
костей пружин приводятся к  логарифмическо-
му масштабу, что обеспечивает их варьирование 
в  широком диапазоне значений. Дополнительно 
устанавливаются допустимые пределы изменений 
значений корректируемых характеристик.

Для проведения модальных испытаний из-
делие устанавливалось на  штатные шасси с  при-
спущенными пневматиками. Схема расположения 
акселерометров представлена на рисунке 9.

В  силу симметрии расчетной модели формы 
колебаний сравнивались только по датчикам, уста-
новленным на  одну из  половин ЛА. Коррекция 
была проведена в три этапа. На первом этапе кор-
ректировались твердотельные тона: перемещения 
и  вращения относительно осей глобальной систе-

мы координат. В ходе этого этапа изменялись только 
жесткости опор. На следующем шаге достигалось 
соответствие тонов вращения органов управления 
посредством варьирования крутильных жесткостей 
удерживающих их пружин. На последнем этапе из-
менялись упругие характеристики балок и пластин 
так, чтобы достичь согласования по тонам, которые 
происходят с преимущественным деформировани-
ем элементов планера.

Особо отметим, что в силу необходимости за-
дания разных полиномов для исследования сим-
метричного и антисимметричного спектра модель 
была разделена на  две части, которые коррек-
тировались независимо. Результаты коррекции 
симметричного и  антисимметричного спектра 
расчетной модели приведены в  таблицах 2 и  3. 
Распределения изменений некоторых физических 
характеристик модели, которые были получены 
для случая коррекции симметричного спектра, 
представлены на рисунке 10.

Вследствие изменения упругих характеристик 
меняются и формы колебаний. На рисунке 11 при-
ведены формы колебаний, полученные экспери-
ментально (черный цвет) и после коррекции рас-
четной модели (красный цвет).

Оперативная подготовка исходных данных для 
коррекции расчетных моделей ЛА производится 
с  помощью комплекса программ, позволяющих 
проводить обработку и представление результатов 
модального анализа непосредственно в  процессе 
испытаний.

Рисунок 9. Схема установки акселерометров
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Таблица 2
Результаты коррекции симметричного спектра

Тон MAC
Относительная частота Погрешность после 

коррекции,% Примечание
Эксперимент После коррекции

1 0,99 1,00 1,03 3,47 Колебания как твердого 
тела2 0,96 1,84 1,81 –1,47

3 0,97 2,31 2,36 2,25

Упругие
колебания планера

4 0,89 5,92 5,80 –1,99
5 0,91 7,86 7,64 –2,75
6 0,82 9,08 9,01 –0,68
7 0,52 9,42 9,81 4,15
8 0,99 10,18 10,23 0,48

Вращения органов 
управления9 0,43 11,21 11,13 –0,76

10 0,66 8,15 8,43 3,42

Таблица 3
Результаты коррекции антисимметричного спектра

Тон MAC
Относительная частота Погрешность после 

коррекции,% Примечание
Эксперимент После коррекции

1 0,98 1,00 1,01 –0,69 Колебания как твердого 
тела

2 0,94 2,66 2,74 –3,02
Упругие колебания

планера
3 0,88 5,18 5,52 –6,15
4 0,76 6,64 7,06 –5,99
5 0,11 12,07 12,09 0,16
6 0,61 6,88 6,53 5,39

Вращения органов 
управления7 0,96 9,65 9,69 –0,41

8 0,15 11,20 10,98 1,99

Рисунок 10. Изменения физических характеристик модели после коррекции:  
а – ​модулей упругости по первой главной оси; б – ​модулей упругости по второй главной оси;  

в – ​изгибных жесткостей балок

а б в

Заключение

В статье изложены решения ряда задач мно-
гоплановой проблемы коррекции расчетных 
динамических моделей летательных аппаратов 
по результатам экспериментального модального 
анализа. Обоснован выбор методики модальных 
испытаний ЛА и  осуществлена автоматизиро-

ванная обработка их результатов. Представлены 
методы коррекции упругих и  восстановле-
ния диссипативных характеристик расчетных 
моделей, состоящие в  дополнении исходных 
конечно-элементных моделей внутренними 
и  внешними корректирующими элементами. 
Параметры этих элементов являются неизвест-
ными, разыскиваемыми в  ходе решения задачи 
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оптимизации по  целевым значениям из  резуль-
татов экспериментального модального анализа. 
Показана сходимость и устойчивость алгоритма 
коррекции упругих характеристик к  погрешно-
стям в  целевых значениях частот собственных 
тонов колебаний. Критерием оценки сходимо-
сти являлась мера искажения форм собственных 

колебаний по  критерию модального соответ-
ствия. Эффективность разработанных методик 
и  программного обеспечения подтверждена ре-
зультатами решения практических задач коррек-
ции расчетных моделей консоли крыла самолета 
и  полноразмерного самолета типа «летающее 
крыло».

в                                                                           г
Рисунок 11. Сопоставление экспериментальных (черный цвет) и скорректированных  

форм колебаний модели (красный цвет): а – ​симметричный изгиб крыла I‑го тона;  
б – ​симметричный изгиб крыла II‑го тона; в – ​антисимметричный изгиб крыла I‑го тона;  

г – ​антисимметричный изгиб крыла II‑го тона

а                                                                           б
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PROBLEMS OF FINITE ELEMENT MODEL UPDATING  
OF AIRCRAFT BASED  

ON GROUND VIBRATION TEST RESULTS
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Novosibirsk, Russian Federation 
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The paper addresses the issues occurring during updating of computational dynamic models 
of aircraft based on ground vibration test results. These include selection of modal testing 
methodology based on the analysis of ratio between forced monophase modes and eigenmodes. 
Structural damping properties can be identified from test results. It is worth noting that the 
errors in experimental determination of eigenfrequencies are significantly lower than the 
ones in general masses and damping coefficients. The method for updating elastic properties 
of finite element models is developed. The mass matrix is assumed to be accurately defined. 
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The objective function is a weighted sum of squares of differences between experimental and 
calculated eigenfrequencies. The objective function is minimized iteratively. The robustness of 
the approach with respect to errors in ground vibration test results is investigated. The approach 
to model structural damping properties based on ground vibration test results is presented. 
The damping coefficients are computed and chosen as the target ones for each experimentally 
determined eigenmode. That indicates that in modal coordinates the matrix which consists of 
these coefficients is diagonal. In order to construct the damping matrix in physical coordinates, 
the Rayleigh damping model is used. The finite element models of aircraft wing and the aircraft 

of flying wing type have been updated.

Keywords: computational models of aircraft, ground vibration testing, finite element model 
updating, structural damping modeling, flying wing.
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