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Дан анализ влияния разрушающихся слоев в пологих панелях из гибридного материала 
на устойчивость при сжатии и сдвиге. Гибридный материал образован из блоков углепла-
стика и стеклопластика. Блоки образуют симметричную структуру слоев относительно 
нейтральной поверхности. Решение задачи на собственные значения выполнено в пере-
мещениях путем аппроксимации функции прогиба «балочными» функциями в зависимо-
сти от условий опирания на контуре панели. Определяются минимальные собственные 
значения – ​коэффициенты устойчивости и критические усилия сжатия и сдвига. Панель 
нагружается контурным усилием в долях критического усилия, решается задача закри-
тического деформирования при аппроксимации прогиба в виде произведения неизвестной 
амплитуды и минимальной собственной формы. С помощью коэффициентов нагружен-
ности слоев выполняется оценка несущей способности панели по моменту разрушения 
наиболее нагруженного слоя/слоев различной структуры с использованием критерия 
прочности Цая-Ву. Устанавливается предельное усилие, при котором в наиболее нагру-
женном слое коэффициент нагруженности (( )) 1i
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. Этот поврежденный слой заменяют 
фиктивным слоем, обладающим механическими свойствами связующего. Анализ послойного 
разрушения гибридных панелей ограничен пятью этапами нагружения. В результате 
исследований были найдены критические усилия сжатия и сдвига, позволяющие оценить 
влияние послойного разрушения гибридного материала на эти величины, и определен 

эффективный вариант армирования гибридного пакета.

Ключевые слова: устойчивость, пологая панель, гибридный материал, послойное раз-
рушение, критические усилия, предельное разрушающее усилие, критерий прочности.

Поступила в редакцию: 09.07.2025. Принята к печати: 09.09.2025.

Введение

Гибридные композиционные материалы пред-
ставляют собой сочетание нескольких типов ар-
мирующих наполнителей с  различными упруги-
ми и прочностными свойствами в одной матрице. 
Использование принципа гибридизации расширя-
ет возможности регулирования характеристик ме-
ханических свойств композиционных материалов 
с целью достижения технологически приемлемого 
равновесия между преимуществами и  недостат-
ками, присущими любому композиту [1–3]. Такие 
композиции с  успехом применяются в  авиацион-
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ных обшивочных конструкциях, лопастях верто-
летных винтов и ветрогенераторов, объектах стро-
ительной техники, корпусах автомобилей и  яхт 
и др. [4, 5].

Чаще всего полимерные композитные матери-
алы с  несколькими типами армирующего напол-
нителя используют в виде слоистых тонкостенных 
панелей, которые представляют собой объедине-
ние слоев с  более жестким высокомодульным 
(high modulus) наполнителем со  слоями низкомо-
дульного (low modulus), но  более прочного ком-
понента. Прочность гибридной композиции при 
растяжении определяется соотношениями, сле-
дующими из правила смеси, и зависит от степени 
гибридизации, которая может быть оценена объ-
емной долей высокомодульного компонента [3, 6].
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Из-за различия в деформативных и прочност-
ных свойствах компонентов слоистого гибрида 
при монотонном нагружении разнородные слои 
разрушаются при совместной деформации не-
одновременно из-за различия в  их предельных 
деформациях. Эту особенность механизма раз-
рушения слоистых гибридов следует учитывать 
при оценке предельного состояния элементов кон-
струкций, долговечности и трещиностойкости ги-
бридных панелей [6].

В  еще большей степени эта особенность ска-
зывается на устойчивости гибридных панелей, так 
как при изгибе деформация слоев композитной 
среды неравномерна по толщине и зависит от рас-
положения слоя в  общем пакете. Это объектив-
но ускоряет процесс более раннего разрушения 
высокомодульных слоев с  меньшей предельной 
деформацией. Поэтому деформация удаленных 
от  срединной поверхности слоев высокомодуль-
ного компонента может достигнуть предельной 
величины задолго до  наступления критического 
состояния всей слоистой конструкции. Но  опыт 
показывает, что для некоторых вариантов струк-
туры гибридной композиции преждевременное 
разрушение отдельных высокомодульных слоев 
не приводит к полной потере устойчивости всей 
панели вследствие перераспределения нагрузки 
между неразрушенными слоями. Несущая спо-
собность панели в этом случае во многом опреде-
ляется структурными параметрами слоистой сре-
ды – ​степенью гибридизации (количеством слоев 
разной природы) и последовательностью укладки 
разнородных слоев.

В  данной работе проведено исследование 
устойчивого состояния стеклоуглепластиковых 
панелей различной структуры при сжатии и сдви-
ге и дана оценка влияния разрушения перегружен-
ных слоев гибридной пологой панели на критиче-
ские усилия потери устойчивости в  зависимости 
от  последовательности укладки слоев, радиуса 
кривизны поверхности и граничных условий.

1. Обзор опубликованных 
материалов

Поведение многослойных ортотропных и ани-
зотропных тонкостенных элементов конструкций 
под нагрузкой изучали многие исследователи 
[7–12], которыми были предложены различные 
кинематические модели для прогнозирования 
устойчивости и  динамического поведения ком-
позитных конструкций на основе различных под-
ходов теории анизотропных пластин и  оболочек. 
Как правило, для решения задач на  собственные 
значения композитных элементов ортогональной 
формы применяют приближенные аналитические 
или численные методы. Известные вычислитель-
ные процедуры [13–15], такие как разложение 

в  ряд, методы Рэлея-Ритца, расширенный метод 
Канторовича, безэлементный метод Галеркина, 
метод подвижных наименьших квадратов Ритца 
и  др., обладают высокой точностью, но  являют-
ся трудоемкими при расчетах композитных кон-
струкций со сложной геометрией и нетрадицион-
ными граничными условиями. В настоящее время 
появились более производительные бессеточные 
методы [10], методы дифференциальных квадра-
тур [16], методы дискретной сингулярной свертки 
[17], которые становятся все более популярными 
при численном решении начальных и краевых за-
дач в инженерных приложениях.

2. Постановка задачи

При заданных геометрических параметрах 
панели (размеры сторон, радиусы кривизны), ма-
териалов элементарных слоев композита (моду-
ли упругости вдоль и  поперек волокон, модуль 
сдвига, коэффициент Пуассона, толщина слоя, на-
пряжения вдоль и  поперек слоя, касательное на-
пряжение), числа слоев в пакете и  структуры ар-
мирования каждого слоя находятся мембранные 
и изгибные жесткости панели.

Решается задача на  собственные значения 
и  определяются собственные значения и  принад-
лежащие им собственные векторы и собственные 
формы. Находятся минимальные собственные 
значения – ​коэффициенты устойчивости и крити-
ческие усилия сжатия и  сдвига, а  также принад-
лежащие им собственные векторы и собственные 
формы. Панель после потери устойчивости нагру-
жается контурным усилием в долях критического 
усилия, решается задача закритического дефор-
мирования при аппроксимации прогиба в  виде 
произведения неизвестной амплитуды и  мини-
мальной собственной формы. Из  решения нели-
нейной задачи определяются амплитуда прогиба 
и  напряженно-деформированное состояние каж-
дого композитного слоя.

Выполняется оценка несущей способности 
панели по  моменту разрушения наиболее нагру-
женного слоя/слоев различной структуры с  ис-
пользованием критерия прочности Цая-Ву [18]. 
При пошаговом нагружении панели контурными 
усилиями сжатия Tx или сдвига Txy по  значени-
ям компонент тензора напряжений каждого слоя 
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. Этот уро-
вень нагружения соответствует исчерпанию не-
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сущей способности данного слоя и  окончанию 
первого этапа нагружения. Далее в  рамках при-
нятой модели этот поврежденный слой заменяют 
фиктивным слоем, обладающим механическими 
свойствами связующего, и  проводят проверку 
прочности панели с  учетом замены поврежден-
ного слоя. В случае выполнения условия прочно-
сти для всего пакета после такой замены продол-
жают пошаговое увеличение нагрузки и послой-
ный анализ нагруженности. Следующий этап 
заканчивается после достижения предельного 
состояния в  следующем перегруженном слое 
(слоях) заменой его фиктивным слоем связующе-
го и  пересчетом напряженно-деформированного 
состояния новой структуры с  возможным пере-
ходом к  очередному этапу нагружения. Анализ 
послойного разрушения гибридных панелей, вы-
полненный в работе, был ограничен пятью этапа-
ми нагружения.

Результатом алгоритма исследований служит 
определение на каждом этапе критических усилий 
сжатия и  сдвига, а  также предельные разрушаю-
щие усилия для каждого этапа (в  статье не  при-
водятся), позволяющие оценить влияние на  них 
послойного разрушения слоев гибридного мате-
риала.

3. Собственные значения 
и собственные формы панели 
из гибридных материалов

Рассмотрим пологую композитную панель 
из  гибридного материала с  отношением сторон 
a/b = 2 (a  = 2 м; b = 1 м), радиусами кривизны 
Rx → ∞, Ry = [∞, 100, 50, 25, 10, 5} м, нагружен-
ную контурными усилиями сжатия Tx и сдвига Txy 
(рисунок 1). Панель принято считать пологой при 
соотношении ее размеров и  радиусов кривизны 
не менее 1/5, линейные размеры образующих по-
верхности панели примерно равны их проекции 
на плоскость. Панель имеет симметричную струк-
туру армирования относительно срединной по-
верхности и состоит из блоков слоев стеклоткани 
толщиной 
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 и углеродной ленты толщиной 
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.
При исследовании прочности панели из  ги-

бридного материала с  разрушающимися слоями 
будем опираться на  решение геометрически не-
линейной задачи закритического деформирова-
ния [9], из  которой найдем критические усилия 
сжатия и  сдвига и  предельные усилия, приводя-
щие к  разрушению отдельных слоев композита. 
Решение задачи на собственные значения панели 
выполним с  помощью метода Рэлея-Ритца, для 
чего функцию перемещений представим в  виде 
двойного ряда, образованного «балочными» 
функциями [11]

а)                                                                                                            б)
Рисунок 1. Схемы нагружения пологой панели: а) – ​сжатие; б) – ​сдвиг
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позволяет определить векторы собственных зна-
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Полагая, что форма закритического прогиба, 
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на  характеристики после разрушения слоя, по-
вторяем расчет с новыми жесткостными и проч-

а)                                                                                              б)
Рисунок 2. Варианты укладки слоев гибридного композита: а) – ​блоки, б) – ​панели
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.	 (1)

Для определения минимальных собственных 
значений и принадлежащих им собственных векто-
ров и форм полную потенциальную энергию E па-
нели площадью S представим в форме Брайана [19]:
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Подставив в  функционал энергии E прогиб 
(1), вычислим интеграл (2) методом Симпсона 
[19], согласно которому область интегрирования 
разбивается на i × j ячеек сетки при 
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 – ​векторы собственных значений.

Условие равенства нулю определителя одно-
родной системы уравнений (3)

.
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ностными свойствами пакета слоев панели при 
сжатии и сдвиге.

Каждое исследование варианта армирова-
ния, радиуса кривизны, вида контурного усилия 
и граничных условий включало 5 этапов, на каж-
дом из  которых нагружение пологой панели до-
водилось до  разрушения наиболее нагруженно-
го слоя композитного материала. Жесткостные 
и  прочностные характеристики панели определя-
лись с  учетом разрушенных на  предыдущих эта-
пах слоев в предположении, что для пакета слоев 
остается справедливой гипотеза Киргофа-Лява.

4. Панель нагружена 
сжимающими усилиями 
в продольном направлении

Результаты исследования послойного разру-
шения прямоугольной панели с разной кривизной 
в поперечном направлении на критические усилия 

сжатия приведены в таблицах 1 и 2. В таблице 1 
показано изменение критических усилий сжатия 
панели со свободно опертыми кромками для двух 
вариантов армирования; в таблице 2 – ​изменение 
критических усилий сжатия панели с  защемлен-
ными кромками. Сравнение результатов расче-
тов показывает, что вариант армирования Б бо-
лее предпочтителен по  устойчивости панели как 
со  свободно опертыми кромками, так и  с  защем-
ленными кромками. На рисунках 3 и 4 приведены 
графики изменения критических усилий сжатия 
в  зависимости от  радиусов кривизны и  этапа на-
гружения для гибридной панели с  различными 
граничными условиями.

5. Панель нагружена 
касательными усилиями сдвига

В  таблицах 3 и  4 приведены результаты из-
менения критических усилий сдвига пологой ги-

Таблица 1
Критические усилия сжатия панели со свободно опертыми кромками

Nxkr(кH / м)
Ry = ∞ Ry = 100 м Ry = 50 м Ry = 25 м Ry = 10 м Ry = 5 м

этап вариант А
1 85,11 87,34 94,05 120,91 204,23 346,04
2 85,10 87,34 94,05 120,93 204,27 346,14
3 85,09 87,34 94,05 120,95 204,26 346,17
4 84,98 87,34 94,05 120,86 203,86 345,59
5 84,81 87,34 94,05 120,73 203,24 344,67

этап вариант Б
1 115,63 118,45 126,91 159,02 255,02 427,08
2 114,78 118,45 126,91 157,12 251,64 421,85
3 109,74 118,45 126,91 145,70 231,35 390,17
4 109,74 113,41 126,07 142,22 226,18 363,19
5 109,74 112,55 121,02 137,96 220,61 337,40

Таблица 2
Критические усилия сжатия гибридной панели с защемленными кромками

Nxkr(кH / м)
Ry = ∞ Ry = 100 м Ry = 50 м Ry = 25 м Ry = 10 м Ry = 5 м

этап вариант А
1 169,81 171,58 176,8 190,19 261,81 404,53
2 169,80 171,58 176,8 190,19 261,81 404,63
3 169,78 171,58 176,8 190,19 261,87 404,63
4 169,54 171,58 176,8 190,19 261,87 403,82
5 169,18 171,58 176,8 190,19 261,87 402,57

этап вариант Б
1 227,48 228,61 231,98 245,3 332,09 498,69
2 227,48 225,51 228,87 245,3 332,09 491,69
3 224,38 206,96 210,28 242,2 327,31 448,98
4 205,85 206,96 210,28 242,2 327,31 415,55
5 205,85 206,95 210,28 223,4 298,39 383,63
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а)                                                                                          б)
Рисунок 3. Собственные формы, соответствующие минимальным собственным значениям:  

(а) – ​при сжатии и (б) – ​сдвиге

а)                                                                                          б)
Рисунок 4. Влияние кривизны панели и этапов нагружения  

на критические усилия сжатия Nxkr(кH / м) панели со свободно опертыми кромками:  
(а) – ​вариант А; (б) – ​вариант Б; 1 – ​Ry = ∞; 2 – ​Ry = 100; 3 – ​Ry = 50; 4 – ​Ry = 25; 5 – ​Ry = 10; 6 – ​Ry = 5

Таблица 3
Критические усилия сдвига панели со свободно опертыми кромками

Nxykr(кH / м)
Ry = ∞ Ry = 100 м Ry = 50 м Ry = 25 м Ry = 10 м Ry = 5 м

этап вариант А
1 121,84 125,12 133,47 156,02 229,03 365,60
2 121,72 124,81 132,89 154,88 218,08 359,71
3 115,47 118,44 126,18 147,24 215,13 342,36
4 115,47 118,44 126,18 147,25 211,01 342,36
5 115,46 118,44 126,18 147,25 206,96 342,56

этап вариант Б
1 172,20 176,04 186,15 214,20 308,51 487,53
2 169,08 172,80 182,61 209,90 282,30 476,02
3 165,03 168,64 178,14 204,61 258,50 462,80
4 149,34 152,82 161,91 186,79 250,46 427,88
5 131,65 135,00 143,63 166,70 243,67 388,55

Таблица 4
Критические усилия сдвига панели с защемленными кромками

Nxykr(кH / м)
Ry = ∞ Ry = 100 м Ry = 50 м Ry = 25 м Ry = 10 м Ry = 5 м

этап вариант А
1 189,66 190,82 194,18 205,95 260,91 379,71
2 189,40 190,52 193,74 205,11 258,48 362,12
3 180,56 170,79 173,77 195,54 246,40 356,72
4 180,55 170,79 173,77 195,55 246,44 349,75
5 180,54 170,77 173,77 195,54 246,46 342,91

этап вариант Б
1 264,93 266,29 270,24 284,39 353,74 508,08
2 260,49 256,52 260,26 279,31 346,61 467,79
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бридной панели последовательно от 1 до 5 этапов 
нагружения. Как видно из  результатов, разруше-
ние слоев не  оказывает существенного влияния 
на критические усилия при сдвиге гибридной па-
нели с рассмотренными структурами армирования 
и граничными условиями. Сравнение результатов 
расчетов показывает, что вариант армирования Б 
более предпочтителен по  устойчивости панели 
как со  свободно опертыми кромками, так и  с  за-
щемленными кромками.

Заключение

1. Анализ напряженно-деформированного со-
стояния плоской гибридной панели показал:

–  при сжатии послойное разрушение проис-
ходит одновременно в  двух слоях углепластика 
с углами армирования φ = 0º, симметрично распо-
ложенных относительно нейтральной поверхности;

–  при сдвиге послойное разрушение проис-
ходит в  слоях композитного материала с  углами 
армирования +45º / –45º, расположенных во мно-
гих случаях вблизи нейтральной поверхности, что 
затрудняет визуальную оценку поврежденности 
панели при эксплуатации таких элементов лета-
тельного аппарата.

2. Влияние разрушенных слоев на  критиче-
ские усилия сжатия плоской гибридной панели 

(Ry = ∞) можно считать незначительным. За 5 эта-
пов нагружения снижение Nx в панели со свобод-
но опертыми кромками составило величину (85,11 
/ 84,81) = 1,004 в варианте армирования А и вели-
чину 1,054 в варианте Б; в панели с защемленными 
кромками – ​1,004 и 1,105. Не отмечено значитель-
ное влияние разрушающихся слоев на  критиче-
ские усилия сжатия для пологих панелей во всех 
вариантах радиусов кривизны.

3. Влияние разрушенных слоев на  критиче-
ские усилия сдвига плоской гибридной панели 
(Ry = ∞) можно считать более заметным по срав-
нению с критическими усилиями сжатия, но так-
же незначительным. За  5 этапов нагружения 
снижение Nxy в  панели со  свободно опертыми 
кромками составило величину 1,055 в  вариан-
те армирования А  и  величину 1,308 в  варианте 
Б; в  панели с  защемленными кромками  – ​1,051 
и  1,169. Наибольшее влияние разрушающихся 
слоев на критические усилия сдвига для пологих 
панелей отмечено в  случае панели с  радиусом 
кривизны (508,08 / 416,74) = 1,219 и  вариантом 
армирования Б.

4. Сравнение результатов по  критическим 
усилиям сжатия и сдвига показало преимущество 
структуры армирования Б для всех вариантов ра-
диусов кривизны и граничных условий на контуре 
панели.

Nxykr(кH / м)
Ry = ∞ Ry = 100 м Ry = 50 м Ry = 25 м Ry = 10 м Ry = 5 м

3 254,74 250,72 231,18 272,91 338,03 430,98
4 231,94 227,88 205,69 249,60 310,89 428,00
5 226,66 202,54 205,69 222,56 280,34 416,74

Окончание таблицы 4
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STUDY OF STABILITY OF FLAT PANELS MADE  
OF HYBRID MATERIALS  

WITH DESTROYING COMPOSITE LAYERS

N. S. Azikov, A. V. Zinin
Mechanical Engineering Research Institute  

of the Russian Academy of Science  
Moscow, Russian Federation 

Moscow Aviation Institute (National Research University) 
Moscow, Russian Federation

The effect of collapsing layers in flat panels made of a hybrid material on the stability under 
compression and shear is analyzed. The hybrid material is formed from carbon fiber and 
fiberglass blocks. The blocks form a symmetrical structure of layers relative to the neutral 
surface. The eigenvalue problem is solved in displacements by approximating the deflection 
function with "beam" functions depending on the support conditions on the panel contour. The 
minimum eigenvalues are determined – ​stability coefficients and critical compression and shear 
forces. The panel is loaded with a contour force in fractions of the critical force, the problem of 
postcritical deformation is solved by approximating the deflection as a product of an unknown 
amplitude and the minimum eigenform. Using the layer loading coefficients, the load-bearing 
capacity of the panel is estimated by the moment of failure of the most loaded layer/layers 
of different structures using the Tsai-Wu strength criterion. The ultimate force is established 
at which the loading coefficient in the most loaded layer is. This damaged layer is replaced 
by a fictitious layer with mechanical properties of the binder. The analysis of layer-by-layer 
destruction of hybrid panels is limited to five loading stages. As a result of the research, critical 
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compressive and shear forces were found, allowing us to evaluate the effect of layer-by-layer 
destruction of the hybrid material on these values, and an effective reinforcement option for the 

hybrid package was determined.

Keywords: stability, flat panel, hybrid material, layer-by-layer failure, critical forces, ultimate 
failure force, strength criterion.
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